Частичная замена животных белков на растительные заставляет кости обновляться активнее

Особенность животных белков и их источники

Частичная замена животных белков на растительные заставляет кости обновляться активнее

Животные белки содержат полный набор незаменимых и условно незаменимых аминокислот, поэтому считаются полноценными.

Основные их источники – мясо, рыба, морепродукты. Богаты им также молочные продукты, яйца.

В таблице приведены источники животного белка и их количественное содержание в продуктах питания.

Наименование продукта


Содержание белка, г на 100 г 

Куриное филе

27-29

Филе индейки

21-23

Мясо говядины, свинины

19-22

Печень

18-20

Субпродукты

15-17

Колбаса, сосиски

12-14

Икра рыб

28-31

Рыба красная

28-30

Рыба белая

18-20

Креветки

17-19

Сыр

24-26

Творог

15-17

Яйца

12-13

Кисломолочные продукты

3-4

Молоко

2-3

Кроме того, протеины из животной пищи имеют высокую биологическую ценность. Например, белок из куриного яйца усваивается организмом на 97% (самый высокий показатель усвояемости среди всех белковых продуктов), творог – на 93%. Из кисломолочных продуктов белок усваивается лучше, чем из цельного молока.

Регулярное употребление достаточного количества пищи животного происхождения – гарантия того, что организм получит необходимую ему норму белка (60-90 г в сутки) для выполнения важнейших функций.

Вредные продукты

Чтобы предотвратить остеоартроз, врачи рекомендуют соблюдать правильное питание. Диета при артрозе исключает жирные, жареные, соленые и пряные продукты.

Какие продукты вредны для суставов?

  • спиртные и газированные напитки;
  • кофе в больших количествах;
  • легкоусвояемые углеводы;
  • маринады;
  • копченые продукты;
  • жареные блюда;
  • майонез;
  • маргарин;
  • полуфабрикаты.

Как видно из списка, для долголетия суставов нужно исключить высококалорийные продукты: майонез, маргарин, «быстрые» углеводы, копчености, газированные напитки, которые способствуют набору веса, а это увеличивает нагрузку на суставы. Кофе в больших количествах вымывает кальций из организма, следовательно, страдают наши кости.

Задача лечебного питания заключается не только в исключении вредных продуктов, но и в снижении веса, чтобы уменьшить нагрузку на суставы. Однако диета при артрозе не должна заключаться лишь в правильном питании. Необходимо изменить привычный образ жизни:

  1. Уменьшить порцию на тарелке.
  2. Соблюдать питьевой режим, из расчета 35 мл чистой воды на кг массы тела.
  3. Начинать день с зарядки.
  4. В течении дня ходить как минимум 10 тыс. шагов.
  5. Больше улыбаться и радоваться каждому дню.

С возрастом хрящевая ткань утрачивает эластичность, уменьшается количество синовиальной жидкости. В месте соприкосновения костей возникает трение, которое приводит к повреждению. Человек при этом испытывает боль. В запущенных случаях, в области суставов появляется отек и припухлость тканей.

При недостатке хондроитина и глюкозамина со временем в суставах развивается артроз, которым страдает более 15 % населения. При лечении артроза врачи назначают хондропротекторы. Есть три поколения препаратов, каждое из которых содержит хондроитин, глюкозамин, или оба компонента.

АРТРА МСМ работает на всех уровнях по восстановлению работы суставов, стимулирует регенерацию на клеточном уровне.

В состав входит метилсульфонилметан, который снимает воспалительный процесс, что является основной причиной болевого синдрома.

Входящий в состав глюкозамин гидрохлорид помогает защищать хрящи от повреждения. Хондроитин сульфат участвует в выработке гиалурона и коллагена.

АРТРА МСМ содержит гиалуронат натрия, благодаря которому синовиальная жидкость имеет вязкую эластичность.

Подводя итог, следует отметить, что только комплексный подход к проблеме, включающий правильное питание, дозированную физическую нагрузку и применение хондропротекторов, поможет сохранить здоровые суставы и продлить молодость организму.

Роль белков в организме человека

Белки в организме играют очень важную и незаменимую роль.

  • Они используются для построения новых и восстановления изношенных клеток и тканей (без их участия рост, развитие организма, обновление тканей, устойчивость к заболеваниям, заживление ран невозможны).
  • Являются основным компонентом крови, лимфы и молока.
  • Являются частью иммунных тел, ферментов, катализирующих биохимические изменения, и жидкостей организма.
  • Участвуют в регулировании артериального давления и поддержании кислотно-щелочного баланса.
  • Действуют как переносчики некоторых витаминов и минералов.
  • Сжигаясь, они снабжают организм энергией (1 г белка = 4 ккал).

Сходства и различия животного и растительного белка

Частичная замена животных белков на растительные заставляет кости обновляться активнее

Животный и растительный белок содержат необходимые организму человека аминокислоты. Благодаря их регулярному поступлению с пищей, мы получаем энергию, усваиваем питательные вещества, наращиваем мышечную массу и т.д. В этом они похожи.

Но различий между растительными и животными белками больше:

  1. имеют разный аминокислотный состав – протеины из растительной пищи бедны незаменимыми АМК (могут содержать всего 2-3 из 8);

  2. животный белок имеет высокую биологическую ценность, почти на 100% усваивается в пищеварительном тракте.

Белковые продукты растительного происхождения, в отличие от животного, не обеспечивают необходимого баланса аминокислот в организме: отсутствие одной может служить препятствием для усвоения других.

Вот почему вегетарианцы рискуют своим здоровьем – неполноценный рацион питания, в котором отсутствует мясо, может привести к серьёзным проблемам с нервной, эндокринной, сердечно-сосудистой системами организма. Для предотвращения этого необходимо обеспечить достаточное ежедневное потребление разных групп белковых растительных продуктов.

Слабость, сонливость, забывчивость, частые головные боли и простуды могут стать первыми признаками недостатка белка.

Важность белка для здоровья человека: дефицит белка

Дефицит белка вызывает квашиоркор (угнетение роста и созревания, гипоальбуминемия, апатия, анорексия, изменения кожи, напоминающие пеллагру, жировая инфильтрация печени).

Дефицит белков особенно опасен для детей (они вызывают задержку роста и умственного развития, похудание) и беременных женщин (белок необходим для правильного роста и развития плода, для выработки большего количества крови для матери и ребенка).

Недополучение белков в утробе матери и у младенцев тормозит физическое и умственное развитие и повышает восприимчивость к инфекционным заболеваниям. Во время грудного вскармливания белок составляет основу увеличения производства молока. 

В случае дефицита белка в пище подавляются или нарушаются многие обменные процессы, анемия, иммуносупрессия, атрофия мышечной ткани, дегенеративные изменения органов, общая слабость, апатия и потеря работоспособности. 

Дефицит белка может быть следствием не только его недостатка или недостаточного поступления в пищу, но также его неправильного усвоения и усвоения (например, при заболеваниях печени и почек, хронической диарее).

Потребность человека в белке

Потребности организма в белке зависят от возраста, пола, физиологического состояния и массы тела. 

Молодые растущие организмы имеют более высокий уровень синтеза белка, что связано с построением новых структур. Согласно рекомендациям диетологов, взрослый (> 19 лет) должен потреблять около 0,8 г белка на 1 кг массы тела в день, поступающего из различных источников (т.е. смешанных белков – животных и растений). Более высокое потребление белка рекомендуется женщинам во время беременности (1,1 г / кг массы тела в сутки) и в период лактации (1,3 г / кг массы тела в сутки), а также детям и подросткам. В случае детей наибольшее количество белка должно содержаться в пище детей младшего возраста (младше 1 года).

В случае разнообразной диеты, содержащей мясо и другие источники животного белка, соблюдение минимальных требований к незаменимым аминокислотам не должно быть трудным. Минимальное количество порций пищи в пищевой пирамиде обеспечивает не менее 60 г белка: например, 1 стакан молока дает 8 г белка; одна порция фасоли (1 стакан) – около 2 г белка, одна порция овощей (1 стакан сырых или 1 стакан вареных) – 2 г белка.

Белок в пищевой пирамиде

Особенность растительных белков и их источники

Частичная замена животных белков на растительные заставляет кости обновляться активнее

Растительные белки имеют более бедный аминокислотный состав, в них может недоставать 2-3 незаменимые АМК (хотя общее количество аминокислот в них может быть даже больше, чем в мясе). Их источники (указано содержание в 100 г продукта):

  1. соя – 33-35 г;

  2. фасоль – 22-25 г;

  3. чечевица – 21-23 г;

  4. маш (бобы мунг) – 23-25 г;

  5. нут (турецкий горох) – 19-21 г;

  6. орехи, семечки – 16-20 г;

  7. отруби – 19-21 г;

  8. горох – 12-14 г;

  9. макаронные изделия из твёрдых сортов пшеницы – 11-13 г;

  10. гречка –11-13 г;

  11. овсянка – 10-12 г;

  12. пшеница и крупы на её основе – полба, булгур– 10 г;

  13. грибы – 3-4 г;

  14. овощи – 2-3 г.

Соевый белок максимально приближен по составу к животным протеинам (содержит 7 незаменимых аминокислот – отсутствует только метионин). Им богаты соевое молоко, сыр тофу, проростки сои, люцерна. Эти продукты могут стать хорошей альтернативой мясу.

Недостаток растительных белков – низкая биологическая ценность. Они усваиваются организмом лишь на 1/3. Чтобы получить суточную норму протеина и все незаменимые аминокислоты с растительной пищей, необходимо ежедневно употреблять бобовые, орехи и злаки в достаточно больших количествах.

Процесс усвоения веществ

Как отмечали ранее, глюкозамин и хондроитин во многих продуктах содержатся в связанном состоянии и плохо усваиваются. Молекула хондроитина сульфата крупнее молекулы глюкозамина в сотню раз, а биодоступность составляет около 15-20%. Глюкозамин содержит в себе глюкозное ядро, которое как проводник, повышает усвояемость до 41%.

Поэтому, для укрепления суставов в первую очередь необходимо начать правильно питаться.

Не стоит заниматься самолечением, если появились жалобы:

  • хруст;
  • боль во время движений;
  • утренняя скованность;
  • ограничение движений;
  • отек;
  • гиперемия кожи над суставами.

В этом случае только специалист индивидуально подберет терапию, направленную на уменьшение воспаления и боли, восстановление хрящевого каркаса и, следовательно, двигательной функции.

Функциональные амилоиды человека

Частичная замена животных белков на растительные заставляет кости обновляться активнее

Рисунок 8. Чем больше в меланоцитах пигмента меланина, тем темнее наша кожа, как на правой половине фото. Если же пигмента мало, кожа остается светлой, как на левой половине.

Меланин служит защитником химической природы против патогенов, токсичных малых молекул и УФ-излучения и присутствует у большинства эукариот — от грибов и насекомых до человека. Именно меланин причастен к потемнению кожи, когда человек загорает или находится длительное время на солнце.

Описанный механизм формирования меланина является «срывающим шаблоны». До этого считалось, что амилоиды у человека — это лишь причина развития заболеваний. Полученные данные оказались настолько интересными, что процесс образования меланина, запечатлели на обложке журнала Journal of biological chemistry в декабре 2009 года (рис. 9).

Частичная замена животных белков на растительные заставляет кости обновляться активнее

Рисунок 9. Обложка декабрьского выпуска журнала Journal of biological chemistry 2009 года. Снизу показана электронно-микроскопическая фотография меланоцита и выделена округлая структура меланосомы (нарисованна в 3D красным цветом). Сверху две фотографии показывают фибриллярное содержимое меланосом — амилоидные фибриллы.

Роль белка Pmel17 в формировании меланина не оставляет сомнений. Мутации в гене этого белка приводят к гипопигментации, то есть неспособности выработки пигмента меланина и снижению жизнеспособности клеток. Как уже упоминалось, процесс образования меланина связан с образованием амилоидов. Учитывая токсический эффект, обнаруживаемый у амилоидов и их предшественников (олигомеров) как во внутриклеточном, так и внеклеточном пространстве, можно ожидать, что процесс образования амилоидов будет строго регулироваться, чтобы избежать повреждения клеток. Действительно, полноразмерный Pmel17 синтезируется и доставляется в молодые меланосомы в виде белка, связанного со структурой мембраны (трансмембранного белка), неспособного формировать амилоиды. Только тогда, когда специальный фермент отщепит от белка фрагмент, называемый Mα, запускается процесс. Быстрое образование амилоидов Mα в сочетании с их вычленением из мембраны, по-видимому, минимизирует токсичность, возникающую при образовании амилоидов .

Амилоидные фибриллы Mα служат для связывания и ориентации предшественников меланина, ускоряя их превращение в меланин. Другая, по-видимому, важная функция Mα-амилоида заключается в предотвращении токсичного действия на клетки, связанного с процессом полимеризации меланина. Было показано, что большие избытки предшественников меланина приводят к сильным токсическим эффектам в клетках , что также может объяснить, почему мутации в гене, кодирующем Pmel17, приводит к снижению их жизнеспособности , . Такой эффект можно объяснить утечкой токсичных меланогенных предшественников из меланосом в результате недостаточного удерживания со стороны Mα-амилоида. Предполагается, что связывание соединений-предшественников меланина будет предотвращать прохождение их через мембрану, перекрывая им выход в цитоплазму. Следовательно, способность Mα-амилоида связывать и концентрировать эти соединения внутри меланосом, по-видимому, защищает клетку от токсичности .

Таким образом, механизм образования функциональных амилоидов оказался очень похож у эволюционно далеких организмов от бактерий до человека.

Функциональные амилоиды бактерий

Первый открытый функциональный амилоид назван курлином (от англ. curled structures — скрученные структуры) (рис. 5) и обнаружен у бактерии — кишечной палочки Escherichia coli. Он является основным белковым компонентом биопленок E. coli и важен для колонизации поверхности и взаимодействия с иммунной системой хозяина , . Благодаря общим свойствам амилоидов — устойчивости к протеазам и растворителям — они являются хорошим строительным материалом и придают колонии стабильность и защиту. Исследования показали, что эти амилоиды также участвуют в процессах адгезии клеток (способности клеток к прикреплению к поверхности), в формировании биопленок (особая форма сосуществующих клеток, сцепленных друг с другом в единую колонию). Таким образом, за отработку механизма правильного использования амилоидов, заключающуюся в правильном выборе времени и места их сборки, бактерии получают большую выгоду .

Частичная замена животных белков на растительные заставляет кости обновляться активнее

Рисунок 5. Кишечная палочка Escherichia coli. а — Электронная микрофотография клеток E. coli, продуцирующих амилоидные фибриллы. б — «Морщинистая» колония уропатогенной E. coli, имеющая такой вид благодаря амилоидам курлина. Шкала 500 нм.

Как мы храним гормоны

Клетки заключают вновь синтезированные белковые и пептидные гормоны в везикулы (специальные мешочки) для того, чтобы позже «выбросить» их во внеклеточное пространство. Некоторые из этих клеток хранят такие гормоны длительные периоды времени в высококонцентрированной форме в так называемых «секреторных гранулах» . Такие гранулы содержат крупные нерастворимые агрегаты белков и пептидов , и обладают определенной молекулярной организацией. Так как амилоиды представляют собой высокоорганизованные агрегаты белков (в том числе и пептидов), группа исследователей решила проверить, могут ли гормоны запасаться плотной амилоидной упаковкой. Результаты оказались весьма интересными и были представлены в вышеупомянутой статье .

Несмотря на полученные данные, ученым оставалось решить еще один вопрос: могут ли из такой амилоидной формы освобождаться отдельные молекулы гормона, когда они нужны организму? И ответ был найден. Было обнаружено, что амилоидные фибриллы гормонов высвобождали мономерный (одиночный) гормон при изменении кислотности среды от рН 6 (соответствует секреторным гранулам) к рН 7,4, при которой происходит высвобождение и секреция гормонов . Нужно учитывать, что результаты экспериментов получены в условиях in vitro. Не всегда они соответствуют тому, что происходит в целом организме, потому на исследованиях in vitro авторы не остановились. Они проверили свою гипотезу на культурах клеток гипофиза мыши и на самих мышах. При помощи антител и специальных красителей на амилоиды было доказано, что внутри клетки гормоны гипофиза хранятся в виде амилоидной структуры .

Таким образом, процесс внутриклеточного использования амилоидной структуры не заканчивается на образовании меланина. Ученые продолжают расширять наш круг знаний об этой особой укладке белков.

Полезные продукты

Болезнь лучше предупредить, чем лечить. Употребляя полезные продукты, мы даем организму все необходимые витамины и микроэлементы, благодаря которым организм восстанавливается на клеточном уровне. Для профилактики заболеваний опорно–двигательного аппарата, вначале нужно скорректировать рацион, употребляя продукты для суставов.

Какие продукты для суставов и хрящей нужны?

  • красная рыба;
  • зелень;
  • животные хрящи;
  • белое мясо;
  • молоко;
  • сыры твердых сортов;
  • йогурт;
  • нежирный кефир;
  • желатин;
  • сухофрукты: чернослив, курага, финики, изюм;
  • яйца;
  • крупы;
  • грибы;
  • кукуруза.

В красной рыбе много фосфора, кальция, полезных жиров, которые улучшают состав синовиальной жидкости и укрепляют хрящи. Зелень богата магнием, который укрепляет нервы в суставах. Хорошо усваиваются животные жиры, т.к. они схожи с хрящами человека.

Белое мясо содержит железо, для питания суставов. Молочные продукты при артрозе суставов поставляют кальций. В желатине много хондроитина и глюкозамина. Продукты, богатые селеном и серой, участвуют в синтезе белка, поэтому селенсодержащие продукты должны быть на столе каждый день ― бобовые, яйца, капуста, яблоки, лук, редис.

Хондроитин и желатин разрушаются при термической обработке, поэтому рекомендуется готовить на низких температурах, отдавая предпочтение варке или тушению.

Отметим, в каких продуктах содержится глюкозамин и хондроитин:

  1. Растительный глюкозамин получают из кукурузы.
  2. Животный глюкозамин производят из панциря ракообразных.
  3. Хондроитин животного происхождения экстрагируют из трахеи крупного рогатого скота и хрящей красной рыбы: лососевых, осетровых.

Полученные такими способами хондроитин и глюкозамин имеют высокую биологическую доступность и применяются при изготовлении хондропротекторов.

Амилоиды памяти

За наше дыхание, сокращение сердца, чихание, способность видеть и слышать и многое другое отвечают нейроны — клетки нашего мозга. Но как в отдельных клетках мозга откладывается информация на долгое время, благодаря чему мы не забываем, к примеру, лица наших знакомых и родных?

Частичная замена животных белков на растительные заставляет кости обновляться активнее

Рисунок 10. Аплизия (Aplysia californica).

Благодаря такой замечательной модели для исследования ученым открылся молекулярный механизм долговременной памяти. Оказалось, что белок-регулятор трансляции CPEB играет ключевую роль в долгосрочных изменениях, связанных с хранением памяти. . Белок CPEB был так назван сокращенно от cytoplasmic polyadenylation element binding protein. Это значит, что он представляет собой РНК-связывающий белок, который способствует удлинению полиаденинового хвоста РНК-носителя.

Белок ApCPEB, обнаруженный в нейронах слизняка, а также его аналоги у мушек дрозофил, мышей и людей, содержит на одном из концов домен, который демонстрирует высокое сходство с последовательностью прионных белков, что позволяет ему агрегировать и формировать амилоиды. При помощи другой модели исследования, еще более простой (дрожжи), показали, что CPEB аплизии обладает ключевым свойством, присущим прионам: он может вызывать перестройку структуры других белков, которые наследуются в последующих поколениях дрожжевых клеток . Это свойство прионов имеет большое преимущество перед простыми белками, так как те подвержены процессу постоянного расщепления и нового синтеза (обновление). Если простой белок после некоторого времени функционирования расщепляется и синтезируется снова и так все время, как можно так надолго выполнять свою роль? Белок CPEB приобретает амилоидную структуру, не подверженную деградации, да и еще переводит другие белки в амилоиды, поддерживая изменения в синапсах длительное время. Именно этот процесс может лежать в основе долговременного «запоминания» отдельных клеток нашего мозга.

Итак, схема формирования долговременной памяти в синапсе нейрона при помощи CPEB на сегодняшний момент выглядит так (рис. 11). В синапсе присутствует CPEB, который представляет собой РНК-связывающий белок. Молекулы РНК необходимы для процессов синтеза (трансляции) новых белков. И потому, когда к нейрону проходит сигнал (стимуляция серотонином) происходит локальный «всплеск» трансляции ApCPEB (то есть синтез новых молекул). Это событие в свою очередь стимулирует образование этим белком прионной формы. Следовательно, прионы ApCPEB могут частично составлять следовую память нейронов. В стимулированных серотонином нейронах ApCPEB, возможно, распределен в виде агрегатов (как представлено на рисунке 11). Затем прионная форма ApCPEB запускает процесс активации трансляции факторов, которые необходимы для долгосрочного обеспечения синаптических изменений исключительно в определенных стимулированных синапсах. Это активное состояние ApCPEB является самовоспроизводящимся, благодаря свойству прионой формы, и сохраняется без каких-либо дополнительных посторонних сигналов .

Частичная замена животных белков на растительные заставляет кости обновляться активнее

Рисунок 11. Обеспечение долгосрочной синаптической памяти при помощи прионов ApCPEB.

К тому же такой прионный механизм способствует тому, что формируемая «память» не распространяется на синапсы, где не было стимуляции, благодаря агрегированной форме амилоидов, которая не дает им покинуть стимулированный синапс. А большое конформационное разнообразие, присущее прионным формам («штаммы» или «варианты»), может обеспечить соответствующее разнообразие в силе долгосрочных изменений в разных синапсах .

Таким образом, даже прионы могут быть необходимы организму для выживания, участвуя в процессах долговременной памяти у аплизии. Но ученым еще предстоит выяснить, насколько этот или похожий механизм работает у людей.

Классификация белков

Белки классифицируются по:

  • химической структуре;
  • биологической функции;
  • месту возникновения.

По своему химическому строению белки делятся на простые и сложные. Простые белки состоят только из аминокислот, в то время как сложные белки, помимо аминокислот, также содержат небелковые соединения, так называемые простетические группы (остаток фосфорной кислоты, нуклеиновые кислоты, гем, атом тяжелых металлов, углеводы, липиды). К ним относятся фосфопротеины, нуклеопротеины, хромопротеины, металлопротеины, гликопротеины и липопротеины.

Классификация белков

Из-за различных функций отдельных белков их можно разделить на:

  • структурные белки – коллаген, эластин, кератин, гликопротеины;
  • ферментные белки – ферменты;
  • защитные белки – иммуноглобулины, фибриноген, интерферон;
  • транспортные белки – гемоглобин, альбумин плазмы, липопротеин, трансферрин;
  • белки, участвующие в сокращении – актин, миозин;
  • гормоны – инсулин, глюкагон, паратиреоидный гормон, кальцитонин;
  • белки клеточной мембраны.

По месту нахождения в пище белки можно разделить на:

  • животные белки, полученные из мяса, мясного ассорти, птицы, рыбы, молока, сыра, яиц;
  • растительные белки, полученные из зерновых продуктов, семян бобовых, картофеля, овощей и фруктов.

Содержание белка в мясе может колебаться в пределах 11-23% (например, свинина – 15-21%, говядина – 16-21%, субпродукты – 11-17%, птица – 18-23%, рыба – 16-19%. ). Растительные продукты содержат в среднем 1-2% белка (исключение составляют: зеленый горошек – 6% белка, брюссельская капуста – 5% белка, а горох, фасоль, чечевица и соевые бобы – 21-25% белка), а зерновые продукты – 7-14. % белков.

Источники белков в продуктах

Функциональные амилоиды животных

Функциональные амилоиды обнаружены и у животных: у бабочки Antheraea polyphemus в оболочке яиц , у пауков в составе паутинных нитей . Эти амилоиды выполняют строительные и защитные функции, а в случае паутины и такие, как захват пищи.

Паутина пауков имеет слоистое строение, но в своей основе она содержит белок спидроин, укладка которого состоит не только из жесткой амилоидной формы, но и имеет неструктурированные «хаотичные» участки. Такое строение обеспечивает паутине эластичность с прочностью (рис. 6).

Частичная замена животных белков на растительные заставляет кости обновляться активнее

Рисунок 6. Строение паутины.

Интересно то, как пауки приспособились образовывать амилоиды из белков. В специальной паутинной железе синтезируются компоненты будущей паутины, включая белки спидроины. В полости железы паутина находится в жидком состоянии. Прежде чем быть выделенной наружу из специальных отверстий на брюшке паука, жидкость проходит через специальные «коридоры». При движении изнутри к отверстию в этих коридорах меняются условия, в частности, pH (кислотность раствора, зависящая от содержания ионов водорода). Перепады кислотности вызывают изменение структуры белка, заставляя его приобретать амилоидоподобную форму к выходу из брюшка паука. Такая хитрость защищает пауков от агрегации белков внутри самой железы и обеспечивает их прочным элементом паутины.

Частичная замена животных белков на растительные заставляет кости обновляться активнее

Рисунок 7. Строение сперматозоида (головка, как у сперматозоида мыши).

рисунок автора статьи

Акросомальная матрица является нерастворимой структурой, которая служит в качестве каркаса, контролирующего высвобождение ферментов во время проникновения сперматозоида в яйцеклетку. Для того чтобы пройти все оболочки, окружающие яйцеклетку, состоящие, в том числе, из окружающих ее клеток, сперматозоиды выбрасывают содержимое акросомы. Что удивительно, сами находясь в окружении своих протеолитических и гидролитических ферментов, они не разрушаются. А механизм, ответственный за стабильность матрикса акросомы, не был известен, пока группа ученых в 2014 году не показала, что в акросоме присутствуют амилоиды .

Для протекания акросомальной реакции, а именно выброса содержимого акросомы, важен показатель рН, который в ходе реакции изменяется. Ничего не напоминает? Пауки тоже используют этот показатель среды для использования амилоидной укладки. Считается, что внутри акросомы ферменты удерживаются в неактивном состоянии благодаря кислотной среде (рН от 3 до 4). Когда среда начинает подщелачиваться, то есть рН растет, ферменты активируются и начинают высвобождаться. Чего и стоит ожидать, выделенный амилоид акросомы был стабилен при рН 3, но быстро дестабилизировался при рН 7. Потому исследователи смело заявляют о новом функциональном амилоиде. И хотя еще точно не известно, какой именно белок укладывается в амилоиды (там содержится несколько возможных кандидатов), ясно, что клетки используют их для своей выгоды. Предположительно, амилоидная укладка белка является стабильным каркасом, который играет роль в процессах последовательного высвобождения ферментов для растворения оболочек женской половой клетки .

Наконец, возможно, что сама структура амилоида сперматозоидов функционирует как неферментативный механизм, помогающий проникать через все препятствующие оплодотворению оболочки .

Белки животного и растительного происхождения

При правильном питании взрослого человека половину необходимого количества белка должны составлять животные белки, а другая половина – белок, полученный из растительной пищи. В питании детей и подростков, а также беременных и кормящих женщин белки животного происхождения должны составлять 2/3 необходимого количества белка во всем дневном рационе.

Комбинируя продукты растительного и животного происхождения в одном приеме пищи, вы получаете ценные по аминокислотному составу продукты. Белки цельного молока прекрасно дополняют, например, неполные белки из зерновых продуктов, бедных лизином, треонином и триптофаном. Например, хлопья с молоком или молочный суп с лапшой, манная крупа в молоке.

В молочных продуктах (например, твороге и сычужных сырах) содержание серных аминокислот (метионина и цистеина) несколько ниже. Гораздо сложнее получить высокую биологическую ценность протеина (т.е.возможность использовать его для синтеза протеина тела) в веганской или вегетарианской диете, где необходимо правильно комбинировать растительные продукты.

Белок в молочных продуктах

Переваривание белков в организме человека

Переваривание белков в организме человека начинается в желудке. Кислая среда вызывает денатурацию белка и набухание коллагена, эластина и кератина. В желудочном соке есть фермент пепсин, который разрывает пептидную связь в середине полипептидной цепи, разделяя ее на более короткие участки. 

Переваренная пища в виде мелко измельченной мякоти попадает в двенадцатиперстную кишку, где находится панкреатический сок, содержащий ферменты трипсин, химотрипсин и эластазу, которые гидролизуют пептидные связи между аминокислотами. Сок поджелудочной железы также содержит карбоксипептидазы экзопептидазы, которые действуют на конце пептидной цепи и выделяют концевые аминокислоты. 

Переваривание белков заканчивается в тонком кишечнике, где под действием аминопептидаз и дипептидаз происходит окончательный процесс расщепления пептидной цепи. Всасывание конечных продуктов переваривания белков (аминокислот) происходит в тонком кишечнике. 

Переваривание белков в организме человека

Из клеток тонкой кишки аминокислоты попадают в кровь воротной вены, а оттуда в печень путем пассивной диффузии. Затем аминокислоты переносятся через кровь во все ткани и используются для синтеза белков организма. Непереваренные и / или неабсорбированные белки выводятся с фекалиями.

Заключение

Если сравнивать между собой животные и растительные белки, то преимущество первых очевидно: в них содержатся несинтезируемые организмом аминокислоты и они лучше усваиваются. Но, если рассматривать белковую пищу с точки зрения питательного состава и общей пользы для здоровья, то ситуация неоднозначна. В продуктах, содержащих растительный белок нет вредных насыщенных жиров, зато есть клетчатка, антиоксиданты. Зато они бедны витамином В12 и железом.

Таким образом, наши эксперты сделали вывод: в ежедневном рационе человека, заботящегося о своём здоровье, должны присутствовать продукты, и животного, и растительного происхождения. Распределять в течение дня их рекомендуется так:

  1. на завтрак – сыр, яйца, творог, злаки;

  2. на обед – мясо, бобовые, макароны;

  3. на ужин – рыба, молочные продукты.

Разнообразное питание обеспечит поступление всех необходимых аминокислот, сократит риск возникновения проблем с иммунитетом, кожей, ногтями, внутренними органами. Грамотное употребление растительных и животных белков – залог отличного самочувствия.

Заключение

Исследования последних лет показали, что многие белки при определенных условиях способны формировать амилоидные агрегаты in vitro. Пополнение данных и расширение наших знаний в вопросах амилоидной агрегации белков способствовало принятию нового термина «амилом» (amylome) наряду с такими известными, как «геном» и «протеом». Он обозначает совокупность белков, потенциально способных формировать амилоидоподобные фибриллы . При этом не все из белков, которые к такому способны, обнаруживают при заболеваниях. И если раньше амилоиды ассоциировали лишь с патологией, и десятилетиями ученые и медики искали способы их разрушения и выведения из организма, сейчас становится понятно, что амилоиды эволюционно отбирались для выполнения важных функций. Амилоиды — это и паутина паука, и процессы оплодотворения и образования меланина нашей кожи, запасание пептидных гормонов и даже формирование долгосрочной синаптической памяти. Даже была открыта функциональная роль амилоидных агрегатов белка APP, обнаруживаемых при болезни Альцгеймера, связанная с иммунной системой .

Изучение функциональных амилоидов является новым направлением в биологии амилоидов. И нет сомнений в том, что их число будет только пополняться.

Так кто же такие амилоиды? Друзья или враги? Очевидно, что, как и в случае бактерий, нет одного ответа. Есть патогенные, а есть нормальные, необходимые нам для выживания.

Оцените статью
Денис Серебряков
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Частичная замена животных белков на растительные заставляет кости обновляться активнее
Подвижность суставов при остеоартрите и типы суставов